
Some Observations on the Dynamics of a Congestio n
Control Algorithm

Scott Shenker and Lixia Zhan g
XEROX Palo Alto Research Cente r

David D . Clark
Laboratory for Computer Scienc e

Massachusetts Institute of Technolog y

Abstract

We use simulation to make some observations about th e
behavior of the congestion control algorithm currently
embedded in the 4 .3-Tahoe BSD TCP implementation .
We investigate a simple case of a few TCP connections ,
originating and terminating at the same pair of hosts,
using a single bottleneck link. Our simulations revea l

two unexpected phenomena . First, packets from the in-
dividual connections, rather than being mixed together ,

completely separate into individual clusters . Second,
every connection loses a single packet during each con-
gestion epoch. As a way of exploring the cause of thes e
phenomena, we discuss how the behavior is altered b y
modifications to the congestion control algorithm an d
to the switch queue control algorithm .

1 Introduction

The congestion control algorithm currently embedde d
in the 4 .3-Tahoe BSD TCP implementation, which wa s
developed by Van Jacobson and is described in [5], ha s
had a tremendous impact on congestion in the Inter -
net . Furthermore, it is now considered the standar d
Internet flow control algorithm, as spelled out in [1] .
For these reasons it is important to understand the be-
havior of this algorithm . Unfortunately, besides th e
original paper [5], there have been few detailed perfor-
mance studies of this algorithm (see [7] ; other relate d
work can be found in [8, 3, 11, 4]) . The present paper
represents another contribution, albeit a small one, t o
the cause . We hope that increased understanding o f
this congestion control algorithm can both lead to a
better understanding of the behavior of today's Inter -
net and also provide some guidance for the design o f
future congestion control algorithms .

We use simulation to observe the dynamics of this algo -
rithm in the highly specialized situation of a few TCP
connections, originating and terminating at the sam e
pair of hosts, sharing a single bottleneck link . Thus,

the present work is most definitely not a comprehensiv e
study, and the relevance of our results to more genera l
settings is yet to be determined . However, the sim-
ulations do highlight some phenomena that surprise d
us .

In the next section we briefly describe the congestio n
control algorithm and network used in our simulation .
The results of these simulations are presented in Sec-
tion 3 . In Section 4 we discuss possible implications o f
these results for network performance and also identify
some possible modifications to the congestion control
algorithm and switch queue control algorithm whic h
would alter our results .

2 The Network Model : Algorithms
and Topology

In this section we first provide a quick overview of th e
4 .3-Tahoe BSD TCP congestion control algorithm an d
then describe the topology of the network being con-
sidered .

2 .1 The 4 .3-Tahoe BSD TCP Conges-
tion Control Algorithm

The following is a very abbreviated and oversimplified
description of the 4 .3-Tahoe BSD TCP congestion con-
trol algorithm . For further details, see either [5] or th e
4 .3-Tahoe BSD code itself (which has sufficient com-
ments to render it a useful text) . At TCP connectio n
set-up the receiver specifies a maximum window siz e
maxwnd . l To simplify the presentation in this paper ,
we will assume that all window sizes are measured in
units of maximum size packets, instead of bytes . In
the original TCP specification [10], the window use d
by the sender, which we will denote by wnd, is the

The variable names used here are not the same as in th e
4 .3-Tahoe BSD code .

-30 -

receiver advertised window maxwnd regardless of th e
load in the network . In the 4.3-Tahoe BSD TCP algo-
rithm, the window size used by the sender is adjuste d
in response to network congestion . The sender has a
variable called the congestion window cwnd, which i s
increased whenever new data is acknowledged and i s
decreased whenever a packet drop is detected .' The
actual window used by the sender is the floor of th e
minimum of the congestion window and the receive r
advertised window : 3

wnd LMIN(cwnd,maxwnd)j .

The congestion window adjustment algorithm has tw o
phases, the slow-start or congestion recovery phase ,
where the window is increased rapidly, and the conges-
tion avoidance phase, where the window is increased
much more slowly . Whether a connection is in on e
phase or the other is determined by a control thresh -
old, ssthresh . Whenever a packet drop is detected ,
ssthresh is set to half of the current cwnd value, cwnd
is then set to one, and the congestion recovery phas e
begins . cwnd increases rapidly until it passes the thresh -
old ssthresh, then the algorithm switches into the con-
gestion avoidance phase . The specifics of the adjust-
ment algorithm are as follows .

When new data is acknowledged, the sender does

if (ewnd < ssthresh)

cwnd += 1 ;
else

cwnd += 1 / ewnd

When a packet drop is detected, the sender doe s

ssthresh = cwnd/2

cwnd = 1

We define an epoch of a TCP connection to be th e
time period during which an entire window 's worth of
packets have been acknowledged . We will focus par-
ticularly on those epochs in which packet losses occur .
These will be called congestion epochs .

The amount by which the congestion window increase s
during an epoch, which we will call the acceleration a ,
is an important measure of how rapidly the window siz e
is changing . Notice that when cwnd < ssthresh, cwnd
doubles during an epoch, so a cwnd . In contrast ,
when cwnd > ssthresh, cwnd increases by approxi-
mately 1 during an epoch : a 1 .

2 Packet drops are detected by either the receipt of duplicat e
acknowledgments or the expiration of a timer .

3 Since TCP transmits maximum size packets whenever pos-

sible to avoid the silly-window syndrome, wnd will always b e
an integer and is the maximum number of outstanding packet s

allowed .

2 .2 Network Topology

We will study a simple network topology consisting of
a single switch with a 20 packet buffer connecting two
hosts .' There are Ne TCP connections, all transmit-
ting from the same source host to the same destina-
tion host, as in Figure 1 . The bottleneck transmissio n
line between the switch and the destination host has a
bandwidth p of 50 Kbps, and a propagation delay T .
The transmission line between the source host and th e
switch has a bandwidth of 1 Mbps and a propagatio n
delay of 1 msec . The two parameters we will vary in
this study will be the number of connections Ne and
the propagation delay T . First we will consider a sin-
gle TCP connection, and then three TCP connections . '
The propagation delay T will take on values of .01 se c
and 1 sec .

Each TCP connection is assumed to have a maximu m
window size of 50 packets, with a constant packet siz e
M of 500 bytes . The returning ACK packets are 50
bytes each . Thus, the propagation delays of 0 .01 se c
and 1 sec represent the transmission times of 0 .12 5
and 12 .5 packets, respectively. For our simple network
topology the value of ewnd never exceeds 50, so that
the maximum window size will not be a factor in any o f
our simulations . We also assume that each TCP con-
nection always has data to send and the packet flow i s
controlled by the congestion window only .

3 Results

We first describe the results of simulations with a single
connection, and then compare this with a simulatio n
with three connections . We concentrate on the steady -
state behavior of the algorithm so the initial start-u p
transients are omitted from the data . When there are
multiple connections, the connections are establishe d
at random times .

All of the simulations reported on here were done wit h
a simulator written by one of us (LZ) . The TCP code
was taken directly from the 4 .3-Tahoe BSD release an d
modified slightly to conform to the requirements of th e
simulator . In addition, the code related to TCP con-
nection set-up, keep-alive, and close was removed .

4 When the buffer is full and a new packet arrives, the las t
packet in the buffer is dropped and replaced by the arriving
packet .

'The results for more connections are similar to those wit h
three connections, as long as the number of connections is much
smaller than the number of buffers .

-31 -

Sources

TCP-1

Sinks

TCP- 1

sourc e

host

destin .

hos t
TCP-2

TCP-3

1 Mbps
1 msec

SWITCH

50 Kbp s
1 sec

TCP-2

TCP-3

Figure 1 : Network topology model .

3.1 Single Connectio n

While this case is relatively simple and reveals no sur-
prises, it does help us gain a better understanding o f
the algorithm. Figures 2 and 3 show graphs of queu e
length and cwnd vs . time for the two different values
of propagation delay 7 . The graphs exhibit the os-
cillations common to feedback loops with binary feed -
back . After each congestion epoch, cwnd is decreased ,
reducing the load on the switch and causing the queue
to drop. During the congestion recovery and avoid-
ance phases cwnd increases, leading to an increasin g
queue, until the buffer becomes full and another packe t
is dropped. This pattern repeats itself indefinitely ; the
figures contain only one or a few of these oscillation
periods to allow the reader see the details of the queu e
changes clearly .

The congestion epoch occurs when wnd has reache d
the capacity C of the path . The capacity of a path i s
the maximum possible number of outstanding packet s
(i .e . packets that have been sent but whose ACK's hav e
yet to be received by the sender), assuming no packet s
are dropped . In our network each outstanding packet
must either (1) be in the switch's queue, (2) be on the
bottleneck transmission line, or (3) have its associate d
ACK packet on the bottleneck transmission line in the
other direction .' Thus for our network the capacity o f
the path, when measured in units of maximum sized
packets, is merely the sum of the buffer size B plu s
twice the pipe size P, where P is the bandwidth-delay
product M of the transmission line : C = LB + 2W j .
This calculation depends crucially on the observatio n
that, in our network, the ACK packets never encounter
a queue on their way to the sender and arrive at th e
sender with a minimum spacing equal to the transmis-
sion time of a data packet at the bottleneck link .

In each congestion epoch a single packet is dropped .
This is because the acceleration a of the congestio n

6 We are ignoring the transmission time on the link betwee n

the source host and the switch, and the processing time at th e
receiving end .

control algorithm in the congestion avoidance phase i s
one. In the epoch immediately preceding the conges-
tion epoch, wnd was exactly equal to the capacity C .
Any further increases in the window size in the nex t
epoch result in dropped packets, and the number o f
packets dropped is determined by the acceleration a of
the congestion control algorithm .

The graphs of cwnd vs . time exhibit several facets of
the window adjustment algorithm . We can get an ap-
proximate expression for the window size as a functio n
of time by modeling the adjustments as a continuou s
process and using the differential equation

d cwnd d cwnd d ack
dt

	

dack d t

where
d ack cwnd

d t

	

rtt
and rtt is the average round-trip time of the packets .

The round-trip time is easily approximated . When
cwnd < 2P there is no long-lived packet queue at the
switch, so rtt 2r reflecting the propagation delays fo r
both the data and ACK packets . When cwnd > 2P ,
not all of the packets will fit in the forward and re -
turn pipes and an average queue of size (cwnd — 2P)
will develop . Thus, the average round-trip time i s
rtt 2r + (cwnd — 2P) M = Mun d

An approximation to the term dca kd follows directl y
from the window adjustment algorithm . When cwnd <
ssthresh, ddc wan

dck

	

1 and when cwnd > ssthresh ,
d

d
c wnd

	

cwnd • Thus, there are three possible regime s
of behavior .

1. For small window sizes cwnd < MIN(2P, ssthresh) ,
when the switch's buffer is usually empty and the
congestion control algorithm is in the slow-star t
phase, the growth rate of the window is exponen-
tial : log cwnd

	

2r .

2. If ssthresh is bigger than twice the pipe, then i n
the intermediate regime 2P < cwnd < ssthresh.

-32 -

12000 -

10000

8000 -

6000 -

4000

2000 -

0
230

	

235

	

240
ClOCk(seC)

Figure 2 : Packet queue at the switch and the congestion window of one TCP connection, r = 0 .01 sec . The x' s
above the graph of queue vs . time mark when packets are dropped at the switch . The graph of cwnd vs . time show
the transition from a linear increase to a square root increase . The exponential growth regime in the early part o f
the oscillation is not present due to the small pipe size .

25

20

1 5

10

0 I

	

I
200

	

205

	

210

	

215 220

	

225

	

230

	

235

	

240
Clock(sec)

200 205 210 215 220 225

a queue is starting to form, but the congestion
control algorithm is still in the slow-start phase .
Here, the growth rate of the congestion window
is linear : cwnd tnr . If ssthresh is smalle r
than twice the pipe, then the intermediate regim e
ssthresh < cwnd < 2P also has a linear growt h
rate but with a different constant : cwnd ^• ZT
Notice that while both intermediate regimes giv e
rise to linear growth, the reasons are quite dif-
ferent . In the first case, the ACK's arrive at the
maximal rate (the rate at which the switch can
transmit data packets) and cwnd increases by on e
for each ACK. In the second case the epochs are
separated by the rtt of 2r and cwnd increases by
roughly one every epoch .

3 . For large windows cwnd > MAX (2P, ssthresh) ,
the window grows asymptotically as the squar e

root of time : cwnd '- OW. In this regime the

ACK's are arriving at the maximal rate, and th e
increase in cwnd per each ACK decreases as cwnd
grows .

Packet drops occur when the window size exceeds the
capacity of the path : wnd = C + 1 . Between thi s
extra packet being sent and its drop being detected b y
the sender, C packets are acknowledged . The value o f
cwnd at the time the drop is detected is roughly C+2 —

Thus, we expect that at steady state ssthresh -

h + 2 — 2(e+2) J . Using these expressions as rough
guidelines, the changeover from exponential to linear
growth should occur at cwnd values of approximatel y
0 .25 and 23 for r values of 0 .01 and 1, respectively .
Similarly, the changeover from linear to square roo t
growth should occur at cwnd values of approximatel y
10 and 25, respectively . Figure 2 shows clearly the
transition from linear to square root growth, but th e

-33 -

25 -.

20 -,

15 —

10 -

1

5-.

1

	Il&
260

	

280

	

300

	

320
Clock(sec)

0	 111

200

	

220

	

240

25000 —

20000 -

75000 -

10000 -

5000 -

0	 ,
200

	

220

	

240 260

	

280

	

300

	

320
Clock(sec)

Figure 3 : Queue and congestion window for one connection, r = 1 sec . The black regions in the graph of queue vs .
time are due to rapid queue oscillations between two different values as packets arrive and depart . The structur e
visible in the early part of the oscillatory cycles reflect the clumps of packets arriving at the switch, which creat e
a temporary queue . Once the pipe is full, the queue then gradually increases .

exponential growth regime is not present due to th e
small pipe size . Figure 3 shows all three regimes, bu t
the linear growth regime is extremely narrow .

Notice that increasing the propagation delay r (go-
ing from Figure 2 to Figure 3) increases the perio d
in which the queue is empty, during which the lin e
is underutilized . Most of this underutilization occur s
during the slow-start phase of the congestion contro l
algorithm, where the congestion window has been re -
set to 1 and then doubled in each subsequent epoch .
The line becomes fully utilized whenever the conges-
tion window reaches twice the pipe size . Assuming tha t
ssthresh > 2P, it will take roughly a time period of
2r log2 2P for cwnd to achieve 2P . 7 The first term i s
the round-trip time of the packets when the queue i s
empty, and the second term is the number of epoch s

7 In our network of one connection with r =1 sec, ssthresh i s
only slightly smaller than 2P .

needed to achieve the desired window size .

3.2 Three Connections

In our network, the three connections have the sam e
epoch period because they share the same communi-
cation path . They enter a congestion epoch whenever
the total window size, the sum of the three connection' s
values for wnd, reaches the capacity of the path . One
might initially expect that, as with the single connec-
tion case, there is a single packet loss per congestio n
epoch . We might also expect that the packets from dif-
ferent sources are mixed together in the queue . How -
ever, as is depicted in Figures 4 through 7, neither o f
these expectations are valid .

First, note that in each congestion epoch every con-

-34 -

T1-cross, T2-star, T3-box

x Yv

	

O xY

	

x Y v

	

Y v x

4500 -

4000 -

3500 —

3000 -.

2500 —

2000 -

1500 ..

1000

500
200

T1-solid, T2-dashed, T3-dotted

Figure 4 : Packet queue at the switch and the congestion window sizes of the three connections, with r=0 .01sec .
The marks above the graphs of the queue length indicate when packets from the various connections are dropped by
the switch. Note that the period of oscillation is slightly more than a third of what it was in the single connectio n
case . Furthermore, observe that the connections do not all have the same value of wnd at the time their packe t
is dropped; in each congestion epoch, the first connection to have a packet dropped has wnd = 7 while the othe r
two connections have wnd = 8 . This is because the capacity of the path, 20 in this case, is not a multiple of th e
number of connections . However, since the role of having the first packet drop rotates among the connections, th e
long-term bandwidth allocations are equal .

nection loses exactly one packet.' To understand this ,
consider the epoch in which the sum of the windows is
equal to the capacity. In response to each ACK, the
connections send out a new packet and also increase
cwnd by 1/cwnd . wnd will not increase until cwnd has
passed the next integer . Until then the connections wil l
be clocking their packets with their ACK's, keeping th e
path completely full . Each incoming ACK is a signa l
that a data packet has left the path, and the sender
then responds by filling that temporary hole with an -
other data packet . At the point that wnd increases ,
the connection will send out two packets back-to-back .
There is no room in the path for this second packet ;

8 There are rare cases where some connections don ' t lose a
packet, which we discuss in the Appendix .

when it reaches the switch, the buffer will be full an d
the packet dropped . Since the path becomes full for
all the connections at the same time, and every con-
nection will have increased cwnd by roughly 1 during a
single round-trip time, they will all have a single packe t
dropped during this epoch . This is consistent with our
earlier analysis using acceleration . The acceleration
of the total traffic is Nc , the number of connections ,
since each connection increases ewnd by one durin g
each epoch . Thus, we would expect to see NN packet
drops during the congestion epoch .

Our second assumption, that the packets from the dif-
ferent connections are mixed, is also wrong . Instead ,
the packets are completely separated . Figures 6 and 7

-35 -

T1-cross, T2-star, T3-bo x

260

	

280

	

300

	

320
Clock(sec)

200

9000 -

8000 .-

7000 -

6000 -

5000 -

4000

3000 -

2000 -

1000 -

T1-solid, T2-dashed, T3-dotted

0
200

	

220

	

240 260

	

280

	

300

	

320
Clock(sec)

Figure 5 : Packet queue at the switch and the congestion window sizes of the three connections, with r = 1 sec . In
this case the network capacity of 45 is a multiple of the number of connections, so all connections have the sam e
value of wnd at a packet drop . The order of packet losses is the same for all congestion epochs .

show the cumulative packets sent vs . time for the three
connections, with propagation delays r of 0 .01 sec an d
1 sec, respectively . Notice that each connection send s
out a full window's worth of packets in one burst an d
then waits until the next epoch . This separation oc-
curs for two reasons . First, whenever the window is
increased, the extra packet is sent immediately follow-
ing another packet . When they arrive at the switch ,
these two packets are adjacent in the queue . Second ,
these adjacent packets will, through their acknowledg-
ments, always generate pairs of adjacent packets in fu-
ture epochs ; 9 no packet from another connection wil l
ever come between them . This is because all packets ,
except for retransmissions, are generated in respons e
to acknowledgments . Retransmissions are not an issu e
here because they always occur when all of the con-
nections have wnd = 1 . Therefore, in the process o f
building the window up from 1 after a packet loss, a

90f course, if wnd increases as a result of one of the ACK's ,
there will be additional adjacent packets in the cluster .

connection creates a monolithic clump of packets tha t
are always back-to-back in the queue . There are n o
mechanisms present in our network that can break u p
this separated structure .

4 Implications and Modification s

The previous section described two dynamic phenom-
ena that were contrary to our naive expectations . These
phenomena, while of intellectual interest, also have prac -
tical implications for the functioning of the network .
The fact that each connection loses a packet during
the same congestion epoch means that all of the con-
nections are decreasing their congestion windows at th e
same time . Because the window adjustment algorith m
resets the window to one, the sum of the window size s
after a congestion epoch may be too small to fully uti-
lize the bandwidth of the line when the network has rel -

-36 -

T1-solid, T2-dashed, T3-dotted

	 /a'

'	

50 -

45 -

40 -

35 -

30 -

25

20 -

15 -

10 -

5 -

0	 ,	 ,
200

	

201

	

202

	

203

	

204 205

	

206

	

207

	

208

	

200

	

210
Clock(sec)

Figure 6 : The number of packet generated vs . time for each of the three connections, with r = 0 .01 sec . The fla t
regions indicate the complete separation of packets .

T1-solid, T2-dashed, T3-dotte d140

120 -

100

80 -

60 -

40

20 /77'
O

200

	

205

	

210 215

	

220

	

225

	

230
Clock(sec)

Figure 7 : The number of packet generated vs . time for each of the three connections, with r = 1 sec .

atively large pipes . If only one connection lost a packe t
during a congestion epoch, then the total window siz e
would not vary so suddenly . Note that we have yet to
determine how general this phenomena of synchronize d
packet losses is . While we can identify topologies wher e
this synchronization can be less strong, such as whe n
the round-trip times of the various connections are dra-
matically different, we do not know if synchronization
of packet losses is common in today's Internet .

The complete separation of the packets, while not par-
ticularly a problem in this simple topology, could pos-
sibly cause a problem in a more complicated network .
Consider the case where the three connections, rathe r
than terminating at the same host, had different paths .
Then, the switches on these paths would see a ver y
bursty traffic pattern from these connections: a perio d
with no packets transmitted followed by a period of

packets coming at the rate of the shared line . Thi s
very bursty traffic source might harm the connection s
sharing lines with it . However, we do not know if th e
packet separation phenomenon will arise in these mor e
complicated networks . We would urge others to loo k
for the presence of this separation effect, either in their
simulation experiments or in real networks . If packet
separation is a widespread effect, then modifying th e
protocol to reduce its occurrence may be worthwhile .

We conclude this paper by briefly discussing severa l
algorithmic modifications which will effect these phe-
nomena. The first class of modifications can be imple-
mented in the TCP connection itself, while the secon d
class involve changing the switch queue control algo-
rithm. These modifications are not suggested a gen-
eral improvements to congestion control ; such a pro-
posal would require an investigation of their behavio r

-37 -

in settings far more general than those investigated i n
this paper . Rather, these modifications are presente d
with the intent of illuminating the root causes of th e
phenomena we observed and how these phenomena ar e
effected by various algorithms .

Clearly the most straightforward way to prevent th e
separation of packets is not to allow the sender TCP to
send back-to-back packets . We have experimented with
several algorithms in which the sender introduces de -
lays between the packets of approximately wna . Pacing
out the packets in this manner will create some mixing ,
but each connection still loses a single packet in each
congestion epoch .

Another possible modification to TCP is the chang e
being contemplated for the forthcoming 4 .3-Reno BS D
release[6] . Here, the window adjustment algorithm ha s
been modified so that, upon a single packet loss, eac h
connection maintains at least cwnd/2 outstandin g
packets . 10 In this case, even though the packets are stil l
separated, and each connection loses a single packet i n
each congestion epoch, one can expect less or even n o
bandwidth being wasted because the total network loa d
does not decrease as dramatically as before .

We can also contemplate changing the switch algo-
rithm. One possible way to prevent every connectio n
from losing a packet during a congestion epoch is to im-
plement some form of preemptive dropping, whereby
packets are dropped from the queue even before th e
buffer is full . Conceivably, one could construct such a n
algorithm in which only one of the connections has a
packet dropped in each congestion epoch . An example
of such an algorithm might be to simply drop a singl e
packet (which is randomly chosen from the packets i n
the queue) whenever the queue size passes some thresh -
old . While this might eliminate synchronized packe t
losses, the packets from different connections will stil l
not be mixed .

The mixing of packets can also be done directly a t
the switch itself. The Fair Queueing switch algorithm ,
which originated from a suggestion by Nagle [9] an d
is described and analyzed in [3], is roughly equivalen t
to giving round-robin service to the packets from th e
various connections (see also [2] for further simulation s
of this algorithm) . Thus, regardless of the order i n
which the packets arrived at the queue, they will leav e
fully mixed . Furthermore, the fact that the variou s
connections are somewhat decoupled suggests that th e
connections need not all lose packets in the same epoch .

We are currently in the process of experimenting wit h
algorithms like those suggested above, and will repor t

10A simple-minded approach of reducing cwnd to half woul d
not work properly. For details see [6) .

on them in a future publication 11 . It is important t o
note that the phenomena observed in this paper are
specific to the simple network model considered here .
We have only investigated single bottleneck network s
with all traffic having the same latencies and flowin g
in the same direction . As such, we have neglected th e
effects of random processing times, different round-tri p
times for the various connections, and cross traffic . In
particular, the dynamics are much more complicated
once two-way traffic is introduced since our assumption
about the ACK packets never queueing is no longe r
valid .

Acknowledgments

We would like to thank Van Jacobson, Sally Floyd ,
and Dan Swinehart for their extensive comments o n
an early draft . We would also like to thank Abhiji t
Khale for his help in producing the graphs used in thi s
paper .

Appendix

In the body of this paper we concluded that, since w e
assumed connection increases wnd by one every epoch ,
every connection loses exactly one packet every conges-
tion epoch . However, if we look at the 4 .3-Tahoe TCP
code, we see that this assumption is not valid . Defin e
cwnd(i) to be the value of cwnd after the i'th packe t
has been acknowledged . In the congestion avoidance
regime, cwnd(i) = cwnd(i — 1) + 1/cwnd(i — 1) . The
increase in cwnd in an epoch starting with the k'tl 1
packet, call it .cwnd, can be calculated as Acwnd =

a1 cwnd(k—1+i)• This sum is always less than one, s o
wnd need not increase by one on every epoch ; wnd in-
creases only if the fractional part of cwnd plus Acwnd
is greater than one . The closer to one Acwnd is, the
more likely the increase will happen . Note that asymp-
totically as cwnd — oo, Acwnd --> 1 — 2ewnd '

If, during a congestion epoch, a connection happen s
to be in a state where wnd does not increase, then
that connection will not lose a packet in that epoch .
While the other connections will reset their windows t o
one, this lucky connection will continue to increase its
window thereby getting more of the bandwidth . This
pattern of a particular connection avoiding a drop i n
a congestion epoch can be repeated cyclically, leading
to an unfairness in the long-term throughput of the

11 Sally Floyd is also experimenting with preemptive rando m
drop algorithms .

-38 -

[7]

[8]

[9]

connections . For example, with our network with thre e
connections, with a buffer size of 32 and a pipe size o f
50 packets, the relative shares of throughput were 31% ,
39%, and 30% .

This anomalous behavior can be removed by simpl y
changing the congestion avoidance increase algorith m
to read :

cwnd += 1 / wnd
With this change, [ewndi always increases by one in
every epoch .

For those who are interested in experimenting with th e
above algorithm, the modified TCP code that we are
currently exploring is described below . In real BSD
TCP code, cwnd is in terms of bytes, instead of packets .
The above modification requires a one-line change i n
tcp_input() procedure: replace

u_int incr = tp->t_maxseg ;
if (tp->snd_cwnd > tp->snd_ssthresh)

incr = MAX(incr * incr / tp->snd_cwnd, 1) ;

by

u_int incr = tp->t_maxseg ;
if (tp->snd_cwnd > tp->snd_ssthresh)

incr = MAX(incr / (tp->snd_cwnd / incr), 1) ;

References

[1] R. Braden (editor) . Requirements for Interne t
hosts - communication layers, RFC-1122, Octo-
ber 1989 .

[2] J . Davin and A . Heybey . A Simulation Study of
Fair Queueing and Policy Enforcement, In this
volume, 1990 .

[3] A. Demers, S . Keshav, and S . Shenker . Analysi s
and Simulation of a Fair Queueing Algorithm, In
Proceedings of SIGCOMM '89, September 1989 .

[4] E . Hashem . Analysis of Random Drop for Gate -
way Congestion Control, In Report LCS TR -
465, Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, 1989 .

V. Jacobson . Congestion Avoidance and Control.
In Proceedings of SIGCOMM '88, August 1988 .

V. Jacobson . Berkeley TCP evolution from 4 .3 -
tahoe to 4 .3-reno . In Proceedings of the Eigh-
teenth Internet Engineering Task Force, Van-
couver, British Columbia, August, 1990 .

A. Mankin and K . Thompson . Limiting Factors
in the Performance of the Slow-Start TCP Algo-
rithms, In Proceedings of USENIX Winter'8 9
Conference, 1989 .

A . Mankin . Random Drop Congestion Control ,
To appear in Proceedings of SIGCOMM '90 ,
September 1990 .

J . Nagle . Congestion Control in TCP/IP Internet -
works, ACM Computer Communications Re -
view, 14(4), October, 1984 .

[10] J . Postel . DoD Standard Transmission Contro l
Protocol . Network Information Center RFC-793 ,
SRI International, September 1981 .

[11] L, Zhang . A New Architecture for Packet Switch-
ing Network Protocols, In Technical Report TR-
455, Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, 1989 .

[12] L . Zhang and D. Clark . Oscillating Behavior o f
Network Traffic, in preparation, 1990 .

[5]

[6]

-39 -

